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Consideration is given to the interaction of plane and cylindrical electromagnetic waves with layered 

cylindrical biotissue. Space distributions of the power density of heat loss are calculated and analyzed. The 

influence of biotissue inhomogeneities (arteries, veins) on electromagnetic heating is evaluated. The results 

reported can be used for hyperthermia of biological objects in oncology. 

1. Introduction. The microwave radiation-biotissue interaction is of considerable interest, in particular, in 

connection with hyperthermia problems in medicine [ 1-3 ]. The main characteristic of such interaction is the space 

power distribution of heat loss, which determines the initial condition for the problem on heat transfer in biotissue. 

Real biotissue represents an inhomogeneous medium with a layered structure (skin, fat, muscles, bone, 

artery, and vein). In the known works it is modeled by a system consisting of plane layers. In the majority of 

papers, consideration is given to irradiation by plane waves. In [2 ], Michel et al. propose a microband irradiator 

for hyperthermia and discuss heating of a plane-layered medium by an inherent wave of a microband line. Such 

irradiators belong to high technologies and can be recommended for wide practical use. 

However, the model of plane layers is not always adequate. In some cases, the curvature of the biotissue 

surface and the interfaces of its material parameters play an important role. A characteristic example, for instance, 

is the hyperthermia of extremities. Here, the cylindrical model of biotissue is more adequate, including the 

cylindrical model with a layered (stratified) structure. This brings up the problem on interact ion of an 

electromagnetic field with cylindrical tissue with various modes of excitation. These aspects are the areas of concern 

in the present work. 

In the rather general case, biotissue is modeled by a system consisting of six cylindrical layers differing 

in their complex dielectric permittivity. 

2. Interaction of a Wave with a Layered Cylindrical Biotissue Sample. This model is the simplest in the 

entire class of models with cylindrical symmetry. As in the plane-layered model [3 ], only interference of waves 

proceeds in it, but these waves possess a more complicated spatial structure. The biotissue configuration under 

consideration is shown in Fig. 1. An incident wave possesses the E-polarization and is represented in the form E ° 

= YoHg l)(kr), Y0 is the unit vector along the Y axis, k = w/c ,  Hg l) is the Hankel function of the first kind (the time 

dependence is taken in the form exp (riot)), c is the sound velocity in vacuum. The case of H-polarization is easily 

considered in the same manner and does not lead to any new conclusions. 

To solve the problem, we used the method of partial regions formed by interfaces of the material charac- 

teristics of a medium (Fig. 1). The electric field therein is represented in the form 

E(1) = AI Jo (kr ~ ) ,  (1) 
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Ey(i) = A i H(O l) (kr ~ ) + B i Hg 2) (kr ~c  i ) ,  (2) 

i = 2, 3, 4, 5, 6; e i is the complex dielectric permittivity of the ith layer. The electric field outside the biotissue is 

tTffy.) = Hgl)(kr) + R Hg 2) (kr ) ,  (3) 

Hg 2) is the Hankel function of the 2nd kind, Jo is the Bessel function, Ai, Bi, R are the unknown constant 

coefficients, the superscript in parentheses at Ey denotes to the number  of a partial region. 

To determine the unknown quantities entering into (1)-(3),  it is necessary to impose the conditions of 

continuity of the tangential components of electric and magnetic fields. As follows from the Maxwell conditions, in 

this case the boundary conditions for a magnetic field are reduced to continuity of the values OE(yi)/Or. As a result, 

we obtain the following matrix equation of the 12th order: 

Sx = y ,  (4) 

where the vectors of unknown x and right-hand y parts (transposed) have the form 

T 
x = (At ,A2,  B2, A 3, B3, A4, B4, A 5, Bs,  A6, B6, R ) ,  

T 
y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, M I, M2) ,  (5) 

M l = Hg 1) (kR6) , M 2 = HI 1) (kR6) . 

The matrix S has the following structure: 

S = 

o, 4 ' ) 4 ' )  o o o o o o o o o 

c~ 4 ') 4 ') o o o o o o o o o 

o ~:) 4 ~) 4 ~) ~ : ) o  o o o o o o 

o 4~) 4 ~ 6 ~ ) 4 ~ ) o  o o o o o o 

o o o 4 ~) 4 ~) 6 ~) 4 ~ ) o  o o o o 

o o o 4 ~) 4 ~) 4 ~) 4 ~) o o o o o 
0 0 0 0 0 ~114) 44) 44) 44) 0 0 0 

0 0 0 0 0 4 4) ¢ ) 4  4) ¢ )  0 0 0 

o o o o o o o 6~) 4 ~) 4 ~) ~ : ) o  

o o o o o o o 4 ~) 4 ~) 4 ~) 4 ~ ) o  
0 0 0 0 0 0 0 0 0 F~l 6) 4 6) K 1 

0 0 0 0 0 0 0 0 0 46) 46) K2 

(6) 

where G1 = Jo(kV~elR1), G2 = V~IJI(kV~EIR1),  ~ i ) =  Hgl)(k~/-~iRi), 6 0  = Hg2)(k~igi), F~i)= _Hgl)(kV~i+l Ri),  
F~ i) = - H~2) (k e4~-i~i+ l Ri) , 1~ i) = v~i Ht'  ) (kv'-~i Ri) , b46 i) = v~i Ht2) (kd~i Ri) , F(7 i) = - e~i+ l Hti) (k evt~i+ l Ri) , 1~8 i) = 
--e~i+~Hql)(k ¢~i+lRi ), K1 = -[--[g2)(kR6), K 2= -Ht2)(kR6 ). 

System (4) was solved on a computer for various biotissue samples. Calculation results and their  discussion 

are given below. 

3. Interaction of a Plane Wave with a Layered Cylindrical Biotissue Sample. Considerat ion is given to the 

same configuration as in the previons section (see Fig. 1) but an incident wave has the form E ° = Yo exp ( - j k z )  = 
Y0 exp ( - f k r  cos (p). The  physics of the interaction becomes considerably more complicated as compared to Sec. 
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Fig. 1. Configuration of the biotissue sample: 1-6) numbers of partial regions; 

7) biotissue environment. 

2, namely, diffraction of waves occurs. Let us represent the incident wave in the form of expansion in cylindrical 

waves [41: 

E° = Yo ~ Jm (kr) exp ( -  ./re,p) . (7) 
m=-oo 

To solve the problem, we generalize the method adopted in the previous section. Instead of equalities 

(1)-(3), we use the expansions 

E~I)= ~ AlmJm(kr~¢l )exp(_fm~,), (8) 
m = - o o  

g i ) =  ~ [Aim H(lm) (kr V~ei ) + Bim H(2m) (kr V~e~ ) l exp ( -  ]m~o) , i = 2, 3, 4, 5, 6 , 
m=-o~ 

(9) 

E~ 7) = ~ [Jm (kr) + R m H(m 2) (kr)] exp ( -  ]m~o), 
m ~ - - O O  

(to) 

Imposing boundary conditions as in Sec. 2, we obtain an infinite set of finite systems of linear algebraic 

equations for the unknown coefficients Aim, Bim, Rm: 

Sm Xm = Ym" (11) 

The structure of the vectors Xm, Ym and the matrix Sm is fully identical to (5), (6) (with the only difference 

that each element acquires the additional subscript m). The matrix elements are determined by the following 

equalities: 

b~ +) = -- H(m I) (k V~ci+ I R i ) ,  ~ + )  = - H(m 2) ( k  ~]ei+ 1 R i ) ,  ~ i )  = V~st " H(ml)(k ~ R i ) ,  

K l m  = - H(m 2> (kR6) , K2m--= _ H(m2> ' (kR6) 
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Fig. 2. Power-density distribution of heat losses of the electromagnetic energy 

in cylindrical biotissue samples [I) fat, 2) muscle)]  with a radius of 2 Ca), 

I0) (b), and 20 cm (c). P, W/m3; r, cm. 
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(a prime indicates the derivative of the function with respect to the overall argument) .  The  free terms are determined 

by the equalities M i r a  = J m ( k R 6 )  , M 2 m  = - J ' m ( k R 6 )  • 

Series (8)-(10) are convergent and can be approximated by end sums. Therefore ,  in practice it is sufficient 

to obtain a solution of the end number  of systems (11). The required order  of approximation considerably depends 

on the biotissue dimensions and its material parameters.  

4. Results and Discussion. A physical characteristic of the field that is of basic interest  for hyper thermia  

is the space power distribution of heat loss. We have calculated the power density of heat loss expressed by the 

relation 

go 2 
P = 5-  I m ,  (r) IEyl (12) 

where e(r)  is the piecewise-constant distribution of the complex dielectric permittivity [e ( r )  = e i in the ith partial 

region, eT(r) = 1 is the dielectric permittivity of vacuum (air) ], e0 = 8.854- 10 -12 F /m.  

Figure 2 shows P ( r )  for cylindrical samples of muscle and fat tissue of different radii in the case of 

irradiation by a cylindrical wave at a frequency o f f  = 915 MHz (in accordance with [1 ], Re e = 51, Im e = 31 are 

adopted for the muscle and Re e = 5.6, Im e = 2.0 - for the fat). As the calculated curves show, P ( r )  for the fat 

sample is a strongly nonuniform oscillating function and the degree of nonuniformity is considerably higher  than 

in the corresponding two-dimensional case. At some radius values a local maximum appears on the cyl inder  axis 

(at r = 0 ) .  

The  qualitative character  of P ( r )  for the fat sample allows us to conclude that P ( r )  can be ra the r  efficiently 

controlled with the aid of semitransparent  external  screens (this idea is suggested in [3] for plane biotissue 

samples). For synthesis  of such a screen it is necessary in each particular case to use the current  methods  of 

computational electrodynamics [5-8 ]. 

In the case of muscle tissue, P ( r )  displays a considerably more pronounced monotonic dependence.  For a 

biotissue sample of large radius, only the surface layer is effectively heated through, while in the case of small radii 

the qualitative picture of P ( r )  changes, i.e., the central part of the sample is effectively heated.  This  effect is of 

importance for local hyper thermia.  

In the same manner ,  the idea of [2 ] on application of microband irradiators can be modified. For cylindrical 

heated objects, use can be made of cylindrical band lines and heating can be accomplished by their  intrinsic waves. 

A procedure of electrodynamic calculation of such lines is given, e.g., in [7 ]. 

5. Influence of Biotissue Microinhomogeneities on Absorption of Electromagnetic Waves.  In the foregoing, 

we have considered the process of absorption of electromagnetic waves by piecewise-homogeneous cylindrical  layers. 

Real biotissue is always inhomogeneous: for instance, blood vessels (arteries, veins) pass through muscle tissue. 

As a result of absorption of electromagnetic waves by them, blood undergoes heating and carries away the heat of 
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the heated region. Therefore ,  it is reasonable to introduce a correction for heating of blood vessels in calculations 

of the absorbed power. 

Arteries and veins in hyper thermia problems can be modeled by thin circular cylinders whose dielectric 

parameters differ from those of the ideal muscle tissue. In this connection, the inhomogeneous muscle biotissue 

can be considered as a dielectric composite and characterized by the effective dielectric permeability eet. To calculate 

the latter, the general methods of the electrodynamics of composite media can be employed, which have recently 

been extensively developed [9-12 I. 

In the present work, we have adopted the simplest model of a composite: cylinders are  identical, straight,  

parallel to each other,  and directed along the Y axis. Then,  according to I10],  within the framework of the 

Maxwe l l -Ha r tne t t  model we can write 

eef = e m 1 + 2/" eb "~ , 

where em, e b is the complex dielectric permittivity of the homogeneous muscle tissue and blood, respectively; f is 

the specific densi ty of blood vessels per unit volume. 

The  absorbed power will be evaluated in an approximation linear with respect to the loss tangent  of the 
N 

dielectric. Assuming that e m = e m + ]d m and eb = e~ + j d  b, we obtain gef  = e'er + reef from (13), where 

, - -  + e b , (14) 
eel  e m 1 + 2 ] "  '2 - e b + e - - 2 '  

e b + + 

Thus,  for the effective absorbed power we obtain Per = Pro(1 + ~), where Pm is the power absorbed directly 

by the muscle tissue and 

4f e'2m ~b ..~ (15) 

+/m) 2 

For Pm we have 

P m =  Per (l - ~) .  (16) 

The  coefficient ~ in formula (16) describes a decrease in the efficiently absorbed power due to heating of the blood 

in the blood vessels. Numerical estimates show that this coefficient is fairly small for the typical parameters  of 

biotissues. 
The  authors  thank the Fundamental  Research Foundation of the Republic of Belarus for financial support  

of the work on a contract (B94-009) basis. 
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